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Abstract

Definitions from graph theory relevant to the nets of crystal chemistry are reviewed. This is followed by a summary of recent

developments in the formal description of such structures.
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1. Introduction

Since the first extended crystal structures were
determined nearly 100 years ago, it has been common-
place to describe them as nets, which are special kinds of
graphs. In recent years there has been an explosive
growth of interest in the subject, as attested, for
example, by the contributions to this issue of the Journal

of Solid State Chemistry. In this paper, we give an
informal account of recent developments in the descrip-
tion of such nets as graphs. The subject has developed
sporadically, with contributions from chemists, crystal-
lographers and mathematicians often working in ignor-
ance of each other’s contributions, and often using
inconsistent terminology. Accordingly we first offer
some definitions that represent an attempt to outline a
logically consistent set that might serve as a starting
point towards the adoption of a more formal agreed set
of definitions and nomenclature in the future.
2. Basic definitions in graph theory

A useful compilation of definitions in graph theory
has been given by Essam and Fisher [1]. Some of the
e front matter r 2005 Published by Elsevier Inc.
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definitions here are based on that more-comprehensive
work.
A graph consists of vertices labeled i, j,y and edges

corresponding to pairs of vertices (i, j). If the pair (i, j) is
distinguished from (j, i) then the edges are directed and
the graph is directed. A directed edge is sometimes called
an arc. There may be more than one edge for a given
pair of vertices; in that case the edges are no longer
simple edges. A loop is a special kind of edge (i, i). A
simple graph is one that has simple undirected edges and
no loops.
Vertices connected by an edge are neighbors, and the

set of neighbors of a vertex is the neighborhood of that
vertex. (But notice that for an embedding of a structure,
the term ‘‘neighbors’’ of a point usually refers to points
the shortest distance away—usually the context makes
the sense clear).
The coordination number of a vertex is the number

of edges incident on the vertex. In graph theory
the coordination number is also called the ‘‘valence’’
or ‘‘degree’’, but ‘‘valence’’ has a different mean-
ing for chemists, so it is avoided. Conversely a
graph with n-coordinated vertices is often called
‘‘n-connected’’ by chemists, but this term has a quite
different meaning (see below) in graph theory and is
also avoided. If all the vertices of a graph have the
same coordination number, n, the graph is often called
n-regular.
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A path (chain) is a sequence of vertices (x1, x2,y, xn)
such that (x1, x2), (x2, x3)y (xn�1, xn) are directed
(undirected) edges.
A circuit (cycle) is a closed path (chain) in which the

first and last vertices are the same (x1, x2, y, xn�1, x1).
These are elementary if no edge or vertex occurs more
than once. (For a circuit or cycle we count the beginning
and end vertices as one). References to cycles below
always means elementary cycles.
A connected graph is one in which there is at least one

chain between all pairs of vertices.
Deletion of a vertex means removing that vertex and

all edges incident upon it.
An n-connected graph is one with at least n+1 vertices

for which there is no set of n�1 vertices whose deletion
would leave the graph no longer connected.
The adjacency matrix for a finite graph containing n

vertices is an n� n matrix in which the i, j element is 1 or
0 according to whether there is or is not an edge
connecting vertices i and j.
An embedding of a graph is a realization of the graph

(e.g., with coordinates for vertices) in Euclidean space.
In a faithful embedding, edges are not allowed to
intersect or to touch vertices other than those at their
end points.
A planar graph has a faithful embedding in two

dimensions.
An automorphism of a graph is a one-to-one

correspondence between the vertices of the graph which
induces a one-to-one correspondence between its edges.
The graph group of a graph is the abstract group

formed from the set of automorphisms of the graph.
Two graphs are isomorphic if there is a one to one

correspondence between the vertex sets that induces a
one-to-one correspondence between their edge sets
(Fig. 1).
Two embeddings of a graph that can be deformed into

each other are ambient isotopic. Note that at no point in
the deformation may edges intersect or have zero length.
Clearly ambient isotopy implies isomorphism (but not
vice versa). See Fig. 1
The complete graph Kn has n vertices each connected

to all the others.
A tree is a connected graph that contains no cycles.
Fig. 1. Three embeddings of the same graph (i.e., the three graphs are

isomorphic) that are not ambient isotopic. The left and right

embeddings are chiral and of opposite hand.
A spanning tree of a connected graph is a tree in which
all the vertices are connected by edges taken from the
graph. If there are v vertices in the graph there are v�1
edges in a spanning tree.
A Bethe lattice is an infinite tree in which every vertex

has the same coordination number (42).
The cyclomatic number of a connected graph is the

number of edges that have to be added to complete the
full graph from a spanning tree. If there are e edges in
the graph the cyclomatic number is e�(v�1) ¼ 1+e�v.
The term net is commonly used in crystal chemistry,

but rarely defined. We take it to mean a periodic
connected simple graph.
An n-periodic net has a realization (which is not

necessarily a faithful embedding) with translational
symmetry in exactly n independent directions.
An n-dimensional net, or graph, permits a faithful

embedding in n-dimensional space, but not in n�1
dimensional space. A planar graph, such as the graph of
any convex polyhedron is 2-dimensional. K5 is the
smallest (i.e., least vertices) non-planar graph. All
graphs have a faithful embedding in 3-dimensional
Euclidean space.
One should not refer to an n-periodic net as ‘‘n-

dimensional’’.
3. Rings, ring sums, and strong rings

Unfortunately the term ‘‘ring’’ in mathematics has a
definite meaning in algebra, but the term is central to
chemistry and the chemical sense is unavoidable.
Unfortunately too, there is some disagreement among
chemists on the meaning of the term and how best
to identify rings in complex molecules. Molecular
chemists [2] consider all cycles to be rings, but consider
a molecule to be n-cyclic if n is the cyclomatic number of
the molecular graph. Thus cubane, for example, is
pentacyclic (Fig. 2).
It is convenient at this point to define a cycle (or ring)

sum. The sum of two cycles is the set of all edges
contained in exactly one of the cycles. A straightforward
generalization is to the sum of a number of cycles as the
set of all edges that occur an odd number of times in the
set of cycles.
Solid state chemists define a ring as a cycle that has

the property that there is no shorter path (‘‘short cut’’)
between two vertices on the cycle than the shortest one
that is part of the cycle. This is equivalent to defining a
ring as a cycle that is not the sum of two shorter cycles.
(Fig. 2). An n-ring has n edges. Notice that the graph of
cubane contains six 4-rings. The total number of distinct
cycles in the cubane graph is 28 (the reader may enjoy
identifying them), but they can all be derived as sums of
one or more of a set of five face rings (the sum of all five
is the sixth face), and this set of five is known as the
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Fig. 2. Reference is to the heavy lines: (a) The graph of a cube; (b) a

spanning tree of that graph; notice that cyclomatic number is 5; (c) a

strong ring; (d) a 6-cycle that is the sum of two 4-rings, and hence not a

ring; (e) a 6-cycle that is the sum of three smaller rings but not of two—

it is therefore a ring, but not a strong ring; (f) an 8-cycle that is the sum

of a 6-cycle (shaded: itself the sum two 4-cycless) and a 4-cycle and

hence not a ring.
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smallest set of smallest rings (SSSR).1 Considerable effort
has been devoted to devising efficient algorithms for
identification of minimal sets of rings for molecules [3,4].
It might also be noticed that the graph of cubane also

has 6-rings (Fig. 2 again) that are the sum of three 4-
rings. Goetzke and Klein [5] make the useful distinction
between rings (as defined here) and strong rings defined
as rings that are not the sum of any number of smaller
cycles. It is our belief that in discussing the topology of
crystal graphs, one should focus mainly on the cycles
that are strong rings. Strong rings have also been called
relevant cycles in the molecular context [4].
4. Vertex symbols

For most of the periodic nets of fundamental
importance in crystal chemistry, there are only a few
different kinds of vertex (by a ‘‘kind of vertex’’ we mean
a set of vertices related by symmetry operations,
including translations), and the local topology is some-
times specified in terms of the size of the shortest rings
or cycles at the angles of a vertex. For an n-coordinated
vertex there are n(n–1)/2 angles and usually one of two
kinds of symbol is used.
I.
1T

indi

of d

for

com

so t
The point symbol [6] or Schläfli symbol [7] is of the
form Aa.Bb.Cc

y in which AoBoCoy and
he enumeration of cycles is not entirely trivial, and doing it will

cate the difficulty of the problem for large structures. The number

istinct ways of selecting at least one from a set of g is 2g
�1. Thus

the cube with g ¼ 5 independent cycles this is 31. But three

binations correspond to pairs of disjoint 4-cycles (opposite faces)

here are only 28 distinct cycles.
a+b+cy ¼ n(n–1)/2 and signify the length (A, B,
Cy) and numbers (a, b, cy) of the shortest cycles
contained in each of the angles. Thus for the 4-
coordinated diamond net for which all the shortest
cycles are 6-cycles the symbol is 66. For the net of the
6-coordinated primitive cubic lattice the point
symbol is 41263.
II.
 The vertex symbol or long symbol [8,9]. Here the size
of the shortest ring at each angle is given with a
subscript to denote the number of such rings. Thus in
the familiar 3-coordinated net of the Si atoms in the
SrSi2 structure, symbol srs, there are five 10-rings at
each angle and the symbol is 105 � 105 � 105, and for
the net ths of the Si atoms in ThSi2 structure, with
two, four and four 10-rings at each angle, the symbol
is 102 � 104 � 104.
In the case of 4-coordinated nets there are six angles.
The net of the 4-coordinated diamond structure, symbol
dia, with two 6-rings at each angle has symbol
62 � 62 � 62 � 62 � 62 � 62. In the case of 4-coordinated nets
only, the angles are grouped into three pairs of opposite
angles in the sequence of a vertex symbol, and subject to
that constraint, the smallest numbers come first. For the
net of the 4-coordinated atoms in the feldspar structure
the point symbol for both kinds of vertex is 42 � 63 � 8 and
the vertex symbols are 4 � 6 � 4 � 6 � 82 � 1010 and
4 � 62 � 4 � 8 � 6 � 62. See [8,9] for more on these symbols
which are the ones used e.g., in the Atlas of Zeolite

Framework Types [10]. It is not necessary that all angles
of a 4-coordinated net have rings. If there is not a ring
an asterisk is inserted (in early work an infinity sign,N,
was used). Thus for the 4-coordinated CdSO4 net (this is
the net of the Cd, S atoms with –O– links considered as
edges), symbol cds, the vertex symbol is 6 � 6 � 6 � 6 � 62 � *.
One sometimes see long symbols used for higher

coordination, but as the number of angles increases as
the square of the coordination number, they soon
become cumbersome; the vertex symbol for the 6-
coordinated net of the primitive cubic lattice is
4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � * � * � *. A 12-coordi-
nated net has (12� 11)/2 ¼ 66 angles!
5. Vector representation and quotient graph

The topology of a periodic net is completely given by
specifying the edges in the repeat unit (primitive cell) [8].
These edges may be given in the form i, j, u, v, w

signifying that the edge connects vertex i in the reference
cell to vertex j in the cell displaced from the reference cell
by ua+vb+wc (here a, b, c are primitive lattice vectors).
In the diamond net (Fig. 3) there are four edges specified
by 1 2 0 0 0, 1 2 1 0 0, 1 2 0 1 0, 1 2 0 0 1. Note that this
string of integers completely specifies the net and that all
topological properties (e.g., ring sizes and combinatorial
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Fig. 3. Top: units of the dia (diamond, left) and cds (CdSO4, right)

nets. Below their quotient graphs. The graphs are unlabeled in this

instance as the edges must be 0 0 0, 1 0 0, 0 1 0, 0 0 1 (notice that a loop

cannot be 0 0 0).

Fig. 4. The quotient graphs for three 8-coordinated nets. Left: the

primitive hexagonal lattice (hP). Center: the body-centered cubic

lattice (cI). Right: a rhombohedral net described in the text.
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symmetry) can be obtained from it [11]. This is the
vector representation of a periodic net. What we have
described is the analog, for a periodic graph, of the
adjacency matrix for a finite graph.
For a finite graph of n vertices there are n! ways of

numbering the vertices and the problem of deciding
whether two adjacency matrices represent different
topologies is far from trivial; indeed it is not even
known how difficult it is [12] although for certain types
of molecular graph it can be solved in polynomial time
[13]. The problem appears to be more acute for periodic
graphs as, in addition to the freedom of numbering
vertices in the repeat unit, there are also different
possible choices of basis vectors (in principle an infinite
number of these); however, for nets that permit
equilibrium placements (see below) an algorithm has
been devised to allow determination in polynomial time
[14] of a unique canonical form for the string of integers
specifying the net, and this is encoded in the program
Systre [11] so the problem of determining whether two
nets are the same or different is solved in this case (but
note, as indicated in the next section, at present Systre
only deals with nets that admit barycentric coordinates
without collisions).
In an important paper, which appears to be the first to
indicate how to specify the topology of a periodic net
using vector representations, Chung et al. [15] describe
the quotient graph which is a labeled graph derived as
follows. The vertices are the vertices of a repeat unit and
the edges are all the edges of the repeat unit labeled uvw.
Thus for the diamond net, there are four edges linking
vertices 1 and 2, labeled respectively 0 0 0, 1 0 0, 0 1 0,
0 0 1. The quotient graph may have loops and multiple
edges (Fig. 3).
The cyclomatic number of the quotient graph of a

periodic net has been called the genus of the net [16].
Beukemann and Klee [17] observe that the minimum
genus of an n-periodic net is n and define nets of minimal
genus as minimal nets. These authors also enumerate all
minimal nets of genus 2–4.
In the absence of labels, a quotient graph will, in

general, belong to more that one net. Fig. 4 illustrates
this point for the simple case of three 8-coordinated nets
with one vertex per unit cell. The first two of these are 8-
coordinated lattices (hexagonal and body-centered
cubic), but notice that structures with one vertex in the
repeat unit are not necessarily the nets of lattices. The
third quotient graph is for a rhombohedral R3̄m

� �

structure ilc in which the edges are not shortest
distances—for unit edge length and minimum density
the unit cell has a ¼ 0.8165 and p ¼ 104.481. In this
last structure there are six vertices at a distance of 0.8165
from a given vertex, and eight more, linked by edges to
that vertex, at a distance of 1.0.
6. Barycentric coordinates and displacements

A net is a purely topological construct, completely
specified by the set of edges. However for many
purposes it is convenient to derive a placement, or
assignation of coordinates, to the vertices. A way, that
can be shown [14] to be unique once one vertex is set at
the origin, is to use dimensionless center-of-mass
(barycentric) coordinates expressed as fractions of the
translation vectors [11]. Such a placement has several
advantages. In particular the coordinates are all rational
and therefore can be expressed exactly as a ratio of
integers, and the combinatorial symmetries relating
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vertices and edges can be determined. A possible
disadvantage is that, for certain topologies, pairs of
vertices may have identical barycentric coordinates
(collide), however nets with such collisions have proved
to be very rare in crystal chemistry so far.
As a simple example consider the net, dia, of the

diamond structure (discussed in the previous section)
with two vertices in the primitive cell. Let atom 2 be at
the origin 0, 0, 0. Atom 1 at x, y, z is bonded only to
atoms labeled 2 at 0, 0, 0; 1, 0, 0; 0, 1, 0; 0, 0, 1. The
average of these is 1/4, 1/4, 1/4; accordingly these are the
values of x, y, z. Notice that a placement of this sort
needs no metric (unit cell size and shape) and follows
immediately from the vector representation.
It should be clear that vertices that have the same

neighbors will have the same barycentric coordinates
(collide).
For periodic nets without collisions, the combinator-

ial symmetry including translations is isomorphic to the
maximum achievable symmetry of a realization (which
is not in all cases a faithful embedding) of the net [18]. If
this maximum symmetry is chiral (consists solely of
rotations and translations) there is no embedding that is
not chiral, and the graph is intrinsically chiral.

Notice that the coordinates in an equilibrium place-
ment are independent of the size or shape of the unit cell
(i.e., the metric).
7. Tilings and nets

In this section, we are concerned exclusively with 3-
periodic tilings of Euclidean space. The tiles are
generalized polyhedra or cages in which some vertices
may have just two edges incident upon them. A tiling is
a filling of space by tiles sharing faces (‘‘face-to-face’’).
The vertices and edges of the tiling form a net and we
say that the net is carried by the tiling. The face symbol

of a tile is of the form [Mm.Nn
y] which indicates that

there are m faces that are M-gons, n faces that are
N-gons etc.
For a tiling with t tiles, f faces, e edges and v vertices

per repeat unit [19]:

t � f þ e � v ¼ 0. (1)

Although the net carried by a tiling is uniquely
determined, the converse is not true; indeed an infinite
number of tilings may carry the same net. Thus a new
tiling can be derived from the old one by fusing pairs of
tiles that have a common face; alternatively, if the
original tiles have more than three faces, they can be
dissected into smaller tiles. Some nets have catenated
rings and it may not be possible to find any tiling for
such nets.
In general though, it appears that for the nets of

interest in crystal chemistry, there is a natural tiling
which is one that has the property that the tiles are the
smallest possible that conserve the full symmetry of the
net and for which the faces are all strong rings. In rare
instances there may be more than one natural tiling.
Notice that the tiles of a natural tiling have the
properties: (a) There is not just one face that is largest
(has the most edges); the cycle corresponding to this face
would be the sum of the other smaller cycles associated
with the other faces and hence not a strong ring; and (b)
There is no strong ring of vertices of the tile that is not a
face and does not cross any of its symmetric copies on
the same tile [20].
The faces of the tiles are the essential rings of the

structure. In the rare examples of a degeneracy (multi-
plicity) in choice of natural tiling, there is an ambi-
guity about the identification of essential rings. We
remark that the same problem arises in molecular
structures [2].
Associated with every tiling is a dual tiling obtained as

follows. A new vertex is placed in the center of each old
tile and new vertices in tiles sharing a face are connected
by a new edge that passes through that old face. To
complete the definition we note that the old tiling is also
the dual of the new one. Sometimes the new and old
tilings are the same; then we say that the tiling is self-

dual. It should be noted that the dual of a natural tiling
may not be (indeed often is not) a natural tiling [16,21].
As a net has infinitely many tilings, there are infinitely

many nets carried by the duals of those tilings. However,
one likes to consider the ‘‘dual’’ of a net; this should be
construed to mean the net of the tiling dual to the
natural tiling of the net. For an important class of nets
the natural tiling is self-dual, and we refer to such nets
and tilings as naturally self-dual.
The genus of the net of the tiling is 1+e�v and the

genus of the net of the dual tiling is 1+f�t; it follows
from Eq. (1) that these two genera are equal.
For a tiling with p kinds of vertex, q kinds of

edge, r kinds of face and s kinds of tile, the transi-

tivity is pqrs. The dual tiling has transitivity srqp.
Notice that it is a necessary, but not sufficient, condition
for a tiling to be self-dual that its transitivity be
palindromic.
Tilings with one kind of tile (s ¼ 1) are tile-transitive

or isohedral. Vertex-transitive nets (p ¼ 1) are sometimes
called uninodal.
Dual tilings carry a lot of information about the

original tiling. Consider a tile of the dual tiling that
encloses one of the vertices of the original tiling. If this
tile has n vertices, then n original tiles meet at that
original vertex. Each face of the dual tile corresponds to
an edge of the original tiling, so the coordination
number of the vertex is the number of faces of the dual
tile. The number of tiles meeting at an edge is the
number of vertices on the corresponding face of the
dual tile.
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